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1 Background

1.1 Gibb’s Inequality

If P and Q are discrete probability distributions, each with n items, then:

−
n∑
i=1

pi log2 pi ≤ −
n∑
i=1

pi log2 qi

With equality only if

pi = qi

Proof

First off, for all x:

log2 x ≤ x− 1

Therefore, since pi is nonnegative:∑
pi log(qi/pi) ≤

∑
pi(qi/pi − 1)

Notice that: ∑
pi(qi/pi − 1) =

∑
qi − pi = 1− 1 = 0

So: ∑
pi log(qi/pi) ≤ 0

∑
pi(log qi − log pi) ≤ 0

∑
pi log qi ≤

∑
pi log pi

Multiply by negative 1:

−
∑

pi log qi ≥ −
∑

pi log pi
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2 EM Algorithm

2.1 Problem statement

Given a set X of observed data. Our goal is to calculate both θ, the parameters
of the model, and Z, a set of hidden variables which affect probabilities within
the model.

2.2 Optimization

Our goal is to choose θ and Z such that our observed data X exhibits maximum
likelihood. In other words, we want to maximize:

P (X|θ) =
∑
Z

P (X,Z|θ) =
∑
Z

P (Z|X, θ)P (X|θ)

This quantity is often intractable...there may be infinitely many possible
solutions for Z. Instead, we hold the distribution of Z constant for a moment.
Let θ(t) be the current estimate of θ. We define:

Q(θ|θ(t)) = EZ|X,θ(t) [logP (X,Z|θ)]

which is the expected value of the logarithm in the brackets over the con-
ditional distribution of Z, where Z is conditional on the choice of θ(t) and the
observed X.

In the expectation step we calculate a closed form for Q(θ|θ(t)) as a function
of θ.

To maximize, find a new value for θ that maximizes Q(θ|θ(t)).
Repeat until Q(θ|θ(t)) converges to within a desired accuracy.

3 Proof of correctness

Let θ(t) be the value of θ at time t. The algorithm above chooses a new value
for θ such that we increase the value of Q(θ|θ(t)). This proof will show that
increasing Q(θ|θ(t)) also implies an increase in logP (X|θ).

Note that for random variables X and Z, conditioned on a third variable θ:

P (X,Z|θ) = P (X|θ) ∗ P (Z|X, θ)

And as long as our choice of Z has nonzero probability:

P (X|θ) =
P (X,Z|θ)
P (Z|X, θ)

Log both sides:

logP (X|θ) = logP (X,Z|θ)− logP (Z|X, θ)
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Take the expectation of both sides over all values of Z, where the distribution
of Z is conditioned on X and a different value of θ, which we denote θ(t).

EZ|X,θ(t) logP (X|θ) = EZ|X,θ(t) logP (X,Z|θ)−EZ|X,θ(t) logP (Z|X, θ)

.
The left side does not depend on Z, so it’s the expectation of a constant.

For the right side, compute expectation as a weighted sum over values of Z:

logP (X|θ) =
∑

z∈range(Z)

P (z|X, θ(t)) logP (X, z|θ)−
∑

z∈range(Z)

P (z|X, θ(t)) logP (z|X, θ)

Note that Q(θ|θ(t)) is exactly the first term. Let H(θ|θ(t)) be the (negated)
second term.

= Q(θ|θ(t)) +H(θ|θ(t))

The above equation is true for all values of θ, including θ(t). So:

logP (X|θ(t)) = Q(θ(t)|θ(t)) +H(θ(t)|θ(t))

Subtract the above two equations:

logP (X|θ)− logP (X|θ(t)) = Q(θ|θ(t))−Q(θ(t)|θ(t)) +H(θ|θ(t))−H(θ(t)|θ(t))

Because of Gibbs’ inequality rule, we know that:

H(θ|θ(t)) ≥ H(θ(t)|θ(t))

So H(θ|θ(t))−H(θ(t)|θ(t)) ≥ 0 and we can write:

logP (X|θ)− logP (X|θ(t)) ≥ Q(θ|θ(t))−Q(θ(t)|θ(t))

Put in words, any change in θ that improves Q will improve logP (X|θ) by
at least as much. This completes the proof.

4 Guassian mixture model

This is one application of the EM algorithm.

4.1 Input

We are given observed input data, including n observations each containing d
features. We represent each observation as a vector xi ∈ Rd, for i = {1, ..., n}.
In addition, we are given K, the number of clusters.
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4.2 Model

The goal is to assign each input vector to a cluster.
Each cluster is assumed to be a normal distribution, such that the likelihood

of a given value of xi, assumed to be in cluster k, is:

Φ(xi;µk,Σk) ∼ N (µk,Σk) =
1√

(2π)d|Σk|
exp [− 1

2 (xi − µk)TΣ−1
k (xi − µk)]

where µk is the mean and Σk the covariance matrix of cluster k.
To model which cluster each xi belongs to, we need three more variables:

• zi ∈ {1..K} such that xi belongs to cluster zi.

• γ(t)
i,k = P (zi = k|xi, θ(t)) as estimated at iteration t.

• w(t)
k = P (zi = k|θ(t)) as estimated at iteration t.

The following letters denote collections of variables:

• θ(t) = {w(t)
k , µ

(t)
k ,Σ

(t)
k } for k = {1..K}, as estimated at time t.

• Z = {zi} for i = {1..n}.

4.3 Initialization

Choose initial values for θ. Many choices work, but we set, for all k ∈ {1..K}:

• µ(0)
k := a unique random xi

• Σ
(0)
k := 1

nXX
T

• w(0)
k := 1

K

We assume that, at each step, the cluster assignments zi are independent of
all values in X except xi. And that the likelihood of each xi is independent of
all cluster assignments except zi.

5 E step

Distribution of z values (soft cluster mappings)

γ
(t)
i,k := P (zi = k|xi, θ(t))

Using Bayes’ theorem:

=
P (zi = k|θ(t))P (xi|zi = k, θ(t))

P (xi|θt)
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=
w

(t)
k Φ(xi;µ

(t)
j ,Σ

(t)
j )

K∑
l=1

w
(t)
l Φ(xi;µ

(t)
l ,Σ

(t)
l )

The log likelihood function:

λ(θ;X) = lnP (X,Z|θ)

By Bayes’ rule:

= lnP (X|Z, θ)P (Z|θ) = lnP (X|Z, θ) + lnP (Z|θ)

= ln

(
n∏
i=1

P (xi|Z, θ)

)
+ ln

(
n∏
i=1

P (zi|θ)

)

=

n∑
i=1

lnP (xi|Z, θ) + lnP (zi|θ)

Since xi is independent of everything in Z except zi:

=

n∑
i=1

lnP (xi|zi, θ) + lnP (zi|θ)

Let Q(θ|θ(t)) be the expected value of λ, over the distribution of Z condi-
tional on the observed values xi, and the previous value of θ, which we denote
θ(t).

Q(θ|θ(t)) = EZ|X,θ(t)λ(θ;X)

= EZ|X,θ(t)

[
n∑
i=1

lnP (xi|zi, θ) + lnP (zi|θ)

]
Linearity of expectation:

=

n∑
i=1

Ezi|X,θ(t) [lnP (xi|zi, θ) + lnP (zi|θ)]

To compute the expected value, we partition the sample space into all K
possible values of zi. Note that these events are disjoint, and their union fills the
whole space. The expectation is the probability of a given assignment zi = k
times the value of the quantity, given that zi = k, summed over all possible
values k.

In other words: consider the quantity in the square brackets a function of
zi. The expected value of a function is simply the sum over all possible inputs
of the probability of that input times the value of the function with that input:
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=

n∑
i=1

K∑
k=1

P (zi = k|xi, θ(t)) [lnP (xi|zi = k, θ) + lnP (zi = k|θ)]

=

n∑
i=1

K∑
k=1

γ
(t)
i,k [ln Φ(xi;µk,Σk) + lnwk]

6 M step

6.1 choice of wk

w
(t+1)
k = arg max

wk

Q(θ|θ(t)) = arg max
wk

n∑
i=1

K∑
k=1

γ
(t)
i,k lnwk

= arg max
wk

K∑
k=1

lnwk

n∑
i=1

γ
(t)
i,k

Subject to the constraint that:

K∑
k=1

wk = 1

Use Lagrange multipliers. let

f(w1, ..., wK) =

K∑
k=1

lnwk

n∑
i=1

γ
(t)
i,k

Let

g(w1, ..., wK) =

K∑
k=1

wk

Any critical points, including local and global maxima, will occur where f()
and g() are tangential. Wherever they are tangential, they will have parallel
gradient vectors. At those points we have:

∇g = λ∇f

for some scalar λ. The gradients are:

fwk
=

1

wk

n∑
i=1

γ
(t)
i,k gwk

= 1

This gives us a system of K + 1 equations:

6



1

wk

n∑
i=1

γ
(t)
i,k = λ for k = {1..K} and the constraint equation

K∑
k=1

wk = 1

For a given wk we have:

wk =
1

λ

n∑
i=1

γ
(t)
i,k

Plug into second:

1 =

K∑
k=1

1

λ

n∑
i=1

γ
(t)
i,k

λ =

n∑
i=1

K∑
k=1

γ
(t)
i,k

Over all k, the values γ
(t)
i,k are a probability distribution, so their sum is 1.

λ =

n∑
i=1

1 = n

Plug into the first:

wk =
1

n

n∑
i=1

γ
(t)
i,k

6.2 Choice of µ

µ
(t+1)
k = arg max

µk

Q(θ|θ(t)) = arg max
µk

n∑
i=1

K∑
k=1

γ
(t)
i,k [− 1

2 (xi − µk)TΣ−1
k (xi − µk)]

Take the vector derivative with respect to a particular µk. Use the fact that
δ
δvv

TAv = 2Av and use the chain rule..

δ

δµk
=

n∑
i=1

γ
(t)
i,kΣ−1(xi − µk)

Set this to zero.

0 = Σ−1
n∑
i=1

γ
(t)
i,k(xi − µk)

Σ−1 is obviously invertible, so we need the vector to be zero.
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0 =

n∑
i=1

γ
(t)
i,k(xi − µk)

n∑
i=1

γ
(t)
i,kµk =

n∑
i=1

γ
(t)
i,kxi

µ
(t+1)
k =

n∑
i=1

γ
(t)
i,kxi

n∑
i=1

γ
(t)
i,k

=

n∑
i=1

γ
(t)
i,kxi

nw
(t)
k

6.3 Choice of Σk

Σ
(t+1)
k = arg max

Σk

Q(θ|θ(t)) = arg max
Σk

n∑
i=1

γ
(t)
i,k [ln Φ(xi;µk,Σk) + lnwk]

arg max
Σk

n∑
i=1

γ
(t)
i,k

[
−d

2
ln(2π)− 1

2
ln |Σk| −

1

2
(xi − µk)TΣ−1

k (xi − µk) + lnwk

]

arg min
Σk

n∑
i=1

γ
(t)
i,k ln |Σk|+

n∑
i=1

γ
(t)
i,k(xi − µk)TΣ−1

k (xi − µk)

Consider the quadratic form to be the trace of a 1×1 matrix. Use the cyclic
property of trace:

arg min
Σk

n∑
i=1

γ
(t)
i,k ln |Σk|+

n∑
i=1

γ
(t)
i,ktr

(
(xi − µk)(xi − µk)TΣ−1

k

)
arg min

Σk

n∑
i=1

γ
(t)
i,k ln |Σk|+

n∑
i=1

tr
(
γ

(t)
i,k(xi − µk)(xi − µk)TΣ−1

k

)

arg min
Σk

n∑
i=1

γ
(t)
i,k ln |Σk|+ tr

(
n∑
i=1

γ
(t)
i,k(xi − µk)(xi − µk)TΣ−1

k

)

Let S =
n∑
i=1

γ
(t)
i,k(xi − µk)(xi − µk)T

arg min
Σk

n∑
i=1

γ
(t)
i,k ln |Σk|+ tr

(
SΣ−1

k

)
Let B = SΣ−1

k . B is d× d. Aside:

|B| = |S| 1

|Σk|
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ln |B| = ln |S| − ln |Σk|

ln |Σk| = ln |S| − ln |B|

Back to minimizing:

arg min
B

n∑
i=1

γ
(t)
i,k (ln |S| − ln |B|) + tr (B)

arg min
B

(
−

n∑
i=1

γ
(t)
i,k ln |B|+ tr (B)

)
Both determinant and trace can be written in terms of eigenvalues. Let λj

be the jth eigenvalue of B.

arg min
B

− n∑
i=1

γ
(t)
i,k ln

d∏
j=1

λj +

d∑
j=1

λj


arg min

B

− n∑
i=1

γ
(t)
i,k

d∑
j=1

lnλj +

d∑
j=1

λj


Take the derivative with respect to one particular λj , and set it to zero.

0 = −
n∑
i=1

γ
(t)
i,k

1

λj
+ 1

n∑
i=1

γ
(t)
i,k = λj

Since every eigenvalue is the same, we choose:

B =

(
n∑
i=1

γ
(t)
i,k

)
I

SΣ−1
k =

(
n∑
i=1

γ
(t)
i,k

)
I

Σ−1
k = S−1

(
n∑
i=1

γ
(t)
i,k

)

Σk =
S

n∑
i=1

γ
(t)
i,k

=

n∑
i=1

γ
(t)
i,k(xu − µk)(xi − µk)T

n∑
i=1

γ
(t)
i,k
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7 Whitening

Suppose we have a random vector ~z = [z1...zn]T , whose elements are jointly
Gaussian, i.e. ~y ∼ N{µy,Σy}. What is the joint distribution of a related

random vector, ~z = Σ
−1/2
y (~y−µy). This common preprocessing step in machine-

learning algorithms is called ”whitening” - can you explain why this might be
a reasonable name?

7.1 Solution

By definition of mean, the mean of z is its expected value. Here is shown that
the mean of ~z is 0:

µz = E[~z] = E[Σ−1/2
y (~y − µy)] = Σ−1/2

y (E[~y]− µy) = Σ−1/2
y (µy − µy) = 0

The definition of covariance matrix is the expected value of the outer product
of normalized vectors:

cov(~z) = E
[
(~z − µz)(~z − µz)T

]
= E[~z~z T ]

Substitute, remembering that Σ
−1/2
y is symmetric:

= E

[(
Σ−1/2
y (~y − µy)

)(
Σ−1/2
y (~y − µy)

)T]
= E

[
Σ−1/2
y (~y − µy)(~y − µy)TΣ−1/2

y

]
Σ
−1/2
y is constant:

= Σ−1/2
y E

[
(~y − µy)(~y − µy)T

]
Σ−1/2
y

The expectation in the middle is exactly the definition of Σy:

= Σ−1/2
y ΣyΣ−1/2

y = I

The covariance matrix is the identity. In other words, there is no correlation
between variables, and the variance of each variable is 1.

This called ”whitening” because variables are consider ”white” if they are
mutually independent.
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